
Unit 4

Files - Introduction

A file is collection of data or information that has a name, called the filename. Files are

stored in secondary storage devices such as floppy disks and hard disks.

The main memories of a computer such as random access memory or read-only memory

are not used for the storage of files. This is because the main memory of a computer is limited and

cannot hold a large amount of data. Another reason is that the main memory is volatile; that is,

when the computer is switched off, the contents of RAM vanish.

Fig. Communication between program, file, and output device

As shown in Figure, the data read from the keyboard are stored in variables. Variables are

created in RAM (type of primary memory).. It is also possible to read data from secondary storage

devices. When data are read from such devices, they are placed in the RAM and then, console I/O

operations are used to transfer them to the screen. RAM is used to hold data temporarily.

1

Data communication can be performed between programs and output devices or between

files and programs. File streams are used to carry the communication among the above-mentioned

devices. The stream is nothing but a flow of data in bytes in sequence. If data were received from

input devices in sequence, then it is called a source stream, and if the data were passed to output

devices, then it is called a destination stream. Figure shows the input and output streams. The

input stream brings data to the program, and the output stream collects data from the program. In

another way, the input stream extracts data from the file and transfers it to the program; whereas

the output stream stores the data in the file provided by the program.

Fig. Input and output streams

File Stream Classes

A stream is nothing but a flow of data. In the object-oriented programming, the streams are

controlled using the classes.

2

The ios class is the base class. All other classes are derived from the ios class. These

classes contain several member functions that perform input and output operations. The

streambuf class has low-level routines and provides interface to physical devices.

The istream and ostream classes control input and output functions, respectively. The ios

is the base class of these two classes. The functions get(), getline(), and read() and overloaded

extraction operators (>>) are defined in the istream class. The functions put(), write(), and

overloaded insertion operators (<<) are defined in the ostream class. The iostream class is also a

derived class. It is derived from istream and ostream classes. The classes ifstream, ofstream and

fstream are derived from istream ,ostream and iostream respectively. These classes handle input

and output with the disk files. The header file fstream.h contains a declaration of ifstream,

ofstream, and fstream classes, including isotream.h file. This file should be included in the

program while doing disk I/O operations.

Details of File Stream Classes:

Class Description

filebuf
Sets the file buffers to read and write. It holds constant openprot used in

function open() and close() as a member.

fstreambase
The fstreambase acts as a base class for fstream, ifstream, and ofstream.

The functions such as open() and close() are defined in fstreambase

 Provides input operations on files. Contains open() with default input

ifstream mode. Inherits the functions as get(), getline(), seekg(), tellg(), and

 read() from istream class

 Provides output operations on files. Contains open() with default output

ofstream mode. Inherits the functions as put(), seekp(), write(), and tellp()from

 ostream class

fstream
Provides support for simultaneous input/output file stream class. Inherits

all functions from istream and ostream classes through iostream.

3

Steps of File Operations

Before performing file operations, it is necessary to create a file. The operation of a file

involves the following basic activities:

Specifying suitable file name

Opening the file in desired mode

Reading or writing the file (file processing)

Detecting errors

Closing the file

File Opening: In order to perform operations, we have to create a file stream object and

connecting it with the file name. The classes ifstream, ofstream, and fstream can be used for

creating a file stream. The selection of the class is according to the operation that is to be carried

out with the file. The operation may be read or write. Two methods are used for the opening of a

file. They are as follows:

Constructor of the class

Member function open()

1. Constructor of the class:

When objects are created, a constructor is automatically executed, and objects are

initialized. In the same way, the file stream object is created using a suitable class, and it is

initialized with the file name. The constructor itself uses the file name as the fist argument and

opens the file. The class ofstream creates output stream objects, and the class ifstream creates

input stream objects.

Consider the following examples:

a) ofstream out (“text”);
b) ifstream in(“list”);

In the statement (a), out is an object of the class ofstream; file name text is opened, and

data can be written to this file. The file name text is connected with the object out. Similarly,

in the statement (b), in is an object of the class ifstream. The file list is opened for input and

4

connected with the object in. It is possible to use these file objects in program statements

such as stream objects. Consider the following statements:

cout<<“One Two Three”;

The above statement displays the given string on the screen.

out<<“One Two Three”;

The above statement writes the specified string into the file pointed by the object out as

shown in Figure. The insertion operator << has been overloaded appropriately in the ostream

class to write data to the appropriate stream.

Similarly, in the following statements,

in>>string; // Reads data from the file into string where string is a character array

in>>num; // Reads data from the file into num where num is an integer variable

the in object reads data from the file associated with it, as shown in figure. For reading data

from a file, we have to create an object of the ifstream class.

Unit 4

/* Write a program to open an output file using ofstream class.*/

#include <iostream>

#include <fstream>

using namespace std;

int main()
{

char name[15];

int age;
ofstream out("text");

cout<<"Enter Name:"<<endl;

cin>>name;
cout<<"Enter Age:"<<endl;

cin>>age;

out<<name<<"\t";

out<<age <<endl;

out.close(); // File is closed

return 0;
}

Explanation: In the above program, the statement ofstream out (“text”) text is

opened and connected with the object out.

Contents of the file text: pvpsit 15

/* Write a program to read data from file using object of ifstream class.*/

#include <iostream>

#include <fstream>

using namespace std;

int main() {
string name;

int age;
ifstream in("text"); // Opens a file in read mode

in>>name;
in>>age;
cout<<"Name:"<<name<<endl;
cout<<"Age:"<<age;
in.close();

return 0;
}
Output:

pvpit

15

6

Unit 4

/* Write a program to write and read data from file using object of fstream class.*/

#include <iostream>

#include <fstream>

using namespace std;

int main() {
string name;

int age;
fstream f("text");

cout<<"Enter Name:"<<endl;

cin>>name;
cout<<"Enter Age:"<<endl;

cin>>age;
f<<name<<"\t";

f<<age <<endl;

f>>name;
f>>age;
cout<<"\nName:"<<name<<endl;
cout<<"Age:"<<age;

f.close();

return 0;
}

In the above programs, the file associated with the object are automatically closed

when the stream object goes out of scope. In order to explicitly close the file, the

following statement is used:

out.close();
in.close();

Here, out is an object, and close() is a member function that closes the file

connected with the object out. Similarly, the file associated with the object in is closed by

the member function close().

7

Unit 4

/* Write a program to write and read text in a file. Use ofstream and ifstream classes.*/

#include <iostream>

#include <fstream>

using namespace std;

int main()
{
 string name;

 int age;

 ofstream out("text");

 cout<<"Enter Name:"<<endl;

 cin>>name;

 cout<<"Enter Age:"<<endl;

 cin>>age;

 out<<name<<"\t";

 out<<age <<endl;

 out.close(); // File is closed
 ifstream in ("text");
 in>>name;

 in>>age;
 cout<<"\nName:"<<name<<endl;

 cout<<"Age:"<<age;
 in.close();
 return 0;

} Output: Enter Name : PVPSIT

 Enter Age : 24

 Name : PVPSIT

 Age : 24

2. The open() function

The open() function is used to open a file, and it uses the stream object. The open()

function has two arguments. First is the file name, second is the mode and this is optional.

The mode specifies the purpose of opening a file; that is, read, write, append, and so on. If

we don’t specify any mode default will be considered.

In the following examples, the default mode is considered. The default values for

ifstream is ios::in reading only and for fstream is ios::out writing only.

8

Unit 4

(A) Opening file for write operation

ofstream out; // Creates stream object out

out.open (“marks”); // Opens file and links with the object out
out.close() // Closes the file pointed by the object out

out.open (“result”); // Opens another file

(B) Opening file for read operation

ifstream in; // Creates stream object in

in.open (“ marks”); // Opens file and link with the object in

in.close() ; // Closes the file pointed by object in

/* Write a program to open the file for writing and reading purposes. Use open()

function.*/

#include <iostream>

#include <fstream>

using namespace std;

int main() {
string name;

 int age;

 ofstream out;

 out.open("Text");

 cout<<"Enter Name:"<<endl;

 cin>>name;

 cout<<"Enter Age:"<<endl;

 cin>>age;

 out<<name<<"\t";

 out<<age <<endl;

 out.close(); // File is closed

 ifstream in;

 in.open("Text");

 in>>name;

 in>>age;

 cout<<"\nName:"<<name<<endl;

 cout<<"Age:"<<age;

 in.close();

 return 0;

} Output:

 Enter Name: PVPSIT

 Enter Age: 21

 Name:PVPSIT

 Age:21

9

Unit 4

/* Program to create a file consisting of ‘n’ employee’s details and print employee

infromation.*/
#include <iostream>

#include<fstream>

#include<iomanip>

using namespace std;

class emp{
int empno;

string name;

float sal;
public:

void get();

void display();
};
void emp::get()
{

cout<<"Enter empno,name,salary"<<endl;

cin>>empno>>name>>sal;
}
void emp::display()

{
cout<<"\t"<<empno<<"\t"<<name<<"\t"<<sal<<endl;

}
int main() { ofstream

fout; emp e;

int i,n;

fout.open("emp.txt",ios::out);

cout<<"Enter Number of records";

cin>>n;
cout<<"Enter "<<n<<"employee details";

for(i=1;i<=n;i++)
{

e.get();
fout.write((char *)&e,sizeof(e));

}

fout.close();
cout<<"writing finished"<<endl;

cout<<"The data in the file is"<<endl;

ifstream fin;

fin.open("emp.txt",ios::in);

while(fin)
{

fin.read((char *)&e,sizeof(r));
10

Unit 4

e.display();
}
fin.close();

return 0;

}

Checking for Errors

Various errors can be made by the user while performing a file operation. Such errors

should be reported in the program to avoid further program failure. When a user attempts to read a

file that does not exist or opens a read-only file for writing purpose, the operation fails in such

situations. Such errors should be reported, and proper actions have to be taken before further

operations are performed.

The ! (logical negation operator) overloaded operator is useful for detecting errors. It is a

unary operator and, in short, it is called a not operator. The (!) not operator can be used

with objects of stream classes. This operator returns a non-zero value if a stream error occurs

during an operation. Consider the following program:

/*Write a program to check whether the file is successfully opened or not.*/

#include<fstream>
#include<iostream>

using namespace std;

int main()
{

ifstream in ("text");
if (!in) cerr <<"File is not opened";

else cerr <<"File is opened"; return

0;
}

Output: File is not opened

11

Unit 4

Finding End of a File

While reading data from a file, it is necessary to find where the file ends, that is, the end of

the file. The programmer cannot predict the end of the file. If in a program, while reading the file,

the program does not detect the end of the file, the program drops in an infinite loop. To avoid

this, it is necessary to provide correct instructions to the program that detects the end of the file.

Thus, when the end of the file is detected, the process of reading data can be easily terminated.

The eof() member function() is used for this purpose.

The eof() stands for the end of the file. It is an instruction given to the program by the

operating system that the end of the file is reached. It checks the ios::eofbit in the ios::state. The

eof() function returns the non-zero value, when the end of the file is detected; otherwise, it is zero.

/*Write a program to read and display contents of file. Use eof() function.*/

#include <iostream>

#include<fstream>

using namespace std;

int main()
{

ofstream ofs;

char ch;
ofs.open("hello.txt");
cout<<"Enter some data at end type q(QUIT)"<<endl;

cin>>ch;
while(ch!='q')
{

ofs<<ch;
cin>>ch;

}
ofs.close(); ifstream

ifs;

ifs.open("hello.txt");
cout<<"The Data from the file"<<endl;

while(!ifs.eof())
{

ifs>>ch;
cout<<ch;

}
ifs.close();

return 0;
}

12

Unit 4

FILE OPENING MODES

In previous examples, we have learned how to open files using constructors and the open()

function using the objects of ifstream and ofstream classes. The opening of the file also

involves several modes depending on the operation to be carried out with the file. The open()

function has the following two arguments:

Syntax of open() function

object.open (“file_ name”, mode);

Here, the object is a stream object, followed by the open() function. The bracket of the open

function contains two parameters. The first parameter is the name of the file, and the second is

the mode in which the file is to be opened. In the absence of a mode parameter, a default

parameter is considered. The file mode parameters are as shown in Table 16.1.

Table 16.1 File modes

Mode parameter Operation

ios::app Adds data at the end of file

ios::ate After opening character pointer goes to the end of file

ios:: binary Binary file

ios::in Opens file for reading operation

ios::nocreate Opens unsuccessfully if the file does not exist

ios::noreplace Opens files if they are already present

ios::out Open files for writing operation

ios::trunc Erases the file contents if the file is present

1. The mode ios::out and ios::trunc are the same. When ios::out is used, if the

specified file is present, its contents will be deleted (truncated). The file is treated as a new

file.
2. When the file is opened using ios:app and ios::ate modes, the character pointer is

set to the end of the file. The ios:: app lets the user add data at the end of the file,

whereas the ios:ate allows the user to add or update data anywhere in the file. If the

given file does not exist, a new file is created. The mode ios::app is applicable to the

output file only.

15

Unit 4

3. The ifstream creates an input stream and an ofstream output stream. Hence, it is not

compulsory to give mode parameters.
4. While creating an object of the fstream class, the programmer should provide the

mode parameter. The fstream class does not have the default mode.
5. The file can be opened with one or more mode parameters. When more than one

parameter is necessary, a bit-wise OR operator separates them. The following statement

opens a file for appending. It does not create a new file if the specified file is not present.

File opening with multiple attributes

out.open (“file1”, ios::app | ios:: nocreate)

16.9 Write a program to open a file for writing and store float numbers in it.

#include<fstream.h>

#include<iomanip.h>

void main()

{

float a=784.52, b=99.45,c =12.125;

ofstream out (“float.txt”,ios::trunc);

out<<setw(10)<<a<<endl;

out<<setw(10)<<b<<endl;

out<<setw(10)<<c<<endl;

}

Explanation: In the above program, the file “float.txt” is opened. If the file already exists,

its contents are truncated. The three float numbers are written in the file.

16

Unit 4

16.10 Write a program to open a file in binary mode. Write and read the data.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[32];

out.open (“text”,ios::out | ios::binary);

cout<<“\n Enter text”<<endl;

cin.getline(data,32);

out <<data;

out.close();

ifstream in;

in.open(“text”, ios::in | ios::binary);

cout<<endl<<“Contents of the file \n”;

char ch;

{

ch= in.get();

cout<<ch;

}

17

Unit 4

return 0;

}

OUTPUT

Programming In ANSI and TURBO-C

Contents of the file

Programming In ANSI and TURBO-C

Explanation: The above program is similar to the previous one. The only difference is that here

files are opened in binary mode.

16.7 FILE POINTERS AND MANIPULATORS

All file objects hold two file pointers that are associated with the file. These two file pointers

provide two integer values. These integer values indicate the exact position of the file pointers in

the number of bytes in the file. The read or write operations are carried out at the location pointed

by these file pointers .One of them is called get pointer (input pointer), and the

second one is called put pointer (output pointer). During reading and writing

operations with files, these file pointers are shifted from one location to another in the file. The

(input) get pointer helps in reading the file from the given location, and the output

pointer helps in writing data in the file at the specified location. When read and write operations

are carried out, the respective pointer is moved.

While a file is opened for the reading or writing operation, the respective file pointer input or

output is by default set at the beginning of the file. This makes it possible to perform the reading

or writing operation from the beginning of the file. The programmer need not explicitly set the

file pointers at the beginning of files. To explicitly set the file pointer at the specified position, the

file stream classes provides the following functions:

Read mode: When a file is opened in read mode, the get pointer is set at the beginning of the

file, as shown in Figure 16.7. Hence, it is possible to read the file from the first character of the

file.

18

Fig. 16.7 Status of get pointer in read mode

Write Mode: When a file is opened in write mode, the put pointer is set at the beginning of the

file, as shown in Figure 16.8. Thus, it allows the write operation from the beginning of the file.

In case the specified file already exists, its contents will be deleted.

Fig. 16.8 Status of put pointer in write mode

Append Mode: This mode allows the addition of data at the end of the file. When the file is

opened in append mode, the output pointer is set at the end of the file, as shown in Figure 16.9.

Hence, it is possible to write data at the end of the file. In case the specified file already exists, a

new file is created, and the output is set at the beginning of the file. When a pre-existing file is

successfully opened in append mode, its contents remain safe and new data are appended at the

end of the file.

19

Unit 4

Fig. 16.9 Status of put pointer in append mode

C++ has four functions for the setting of points during file operation. The position of the curser

in the file can be changed using these functions. These functions are described in Table 16.2.

Table 16.2 File pointer handling functions

Function Uses Remark

seekg() Shifts input (get) pointer to a given location. Member of ifstream class

seekp() Shifts output (put) pointer to a given location. Member of ofstream class

tellg() Provides the present position of the input pointer. Member of ifstream class

tellp() Provides the present position of the output pointer. Member of ofstream class

As given in Table 16.2, the seekg() and tellg() are member functions of the ifstream

class. All the above four functions are present in the class fstream. The class fstream is

derived from ifstream and ofstream classes. Hence, this class supports both input and

output modes, as shown in Figure 16.10. The seekp() and tellp() work with the put

pointer, and tellg() and seekg() work with the get pointer.

20

Unit 4

Fig. 16.10 Derivation of fstream class

Now consider the following examples:

16.11 Write a program to append a file.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[25];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,25);

out <<data;

21

Unit 4

out.close();

out.open (“text”, ios::app);

cout<<“\n Again Enter text”<<endl;

cin.getline (data,25);

out<<data;

out.close();

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Contents of the file \n”;

while (in.eof()==0)

{

in>>data;

cout<<data;

}

return 0;

}

OUTPUT

Enter text

C-PLUS-

Again Enter text

PLUS

22

Unit 4

Contents of the file

C-PLUS-PLUS

Explanation: In the above program the file text is opened for writing, that is, output. The text

read through the keyboard is written in the file. The close() function closes the file. Once

more, the same file is opened in the append mode, and data entered through the keyboard are

appended at the end of the file, that is, after the previous text. The append mode allows the

programmer to write data at the end of the file. The close() function closes the file. The same

file is opened using the object of the ifstream class for reading purpose. The while loop is

executed until the end of the file is detected. The statements within the while loop read text

from the file and display it on the screen.

16.12 Write a program to read contents of the file. Display the position of the get pointer.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[32];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,32);

out <<data;

out.close();

23

Unit 4

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Contents of the file \n”;

int r;

while (in.eof()==0)

{

in>>data;

cout<<data;

r=in.tellg();

cout<<“ (“<<r <<“)”;

}

return 0;

}

OUTPUT

Enter text

Programming In ANSI and TURBO-C

Contents of the file

Programming (11)In (14)ANSI (19)and (23)TURBO-C (31)

Explanation: The above program is similar to the previous one. In addition here, the function

tellg() is used. This function returns the current file pointer position in the number of bytes

from the beginning of the file. The number shown in brackets in the output specifies the position

of the file pointer from the beginning of the file. The same program is illustrated below using the

binary mode.

24

Unit 4

16.8 MANIPULATORS WITH ARGUMENTS

The seekp() and seekg() functions can be used with two arguments. Their formats with two

arguments are as follows:

seekg(offset, pre_position);

seekp(offset, pre_position);

The first argument offset specifies the number of bytes the file pointer is to be shifted from

the argument pre_position of the pointer. The offset should be a positive or negative

number. The positive number moves the pointer in the forward direction, whereas the negative

number moves the pointer in the backward direction. Fig 16.11 provides the status of pre-

position arguments. The pre_position argument may have one of the following values:

ios::beg Beginning of the file

ios::cur Current position of the file pointer

ios::end End of the file

Fig. 16.11 Status of pre-position arguments

In the above figure, the status of ios::beg and ios::end is shown. The status of

ios::cur cannot be shown to be similar to ios::beg or ios::end. The ios::cur

means the present position of the file pointer. The ios::beg and ios::end may be referred

to as ios::cur. Suppose the file pointer is in the middle of the file and you want to read the

file from the beginning, you can set the file pointer at the beginning using ios::beg.

However, if you want to read the file from the current position, you can use the option

ios::cur.

The seekg() function shifts the associated file’s input (get) file pointer. The seekp()

function shifts the associated file’s output (put) file pointer. Table 16.3 describes a few pointer

offsets along with their working.

25

Unit 4

Table 16.3 File pointer with its arguments

Seek option Working

in.seekg (0,ios :: beg) Go to the beginning of file

in.seekg (0,ios :: cur) Rest at the current position

in.seekg (0,ios ::end) Go to the end of file

in.seekg (n,ios :: beg) Shift file pointer to n+1 byte in the file

in.seekg (n,ios :: cur) Go front by n byte from the current position

in.seekg (-n,ios :: cur) Go back by n bytes from the present position.

in.seekg (-n,ios::end); Go back by n bytes from the end of file

In Table 16.3, in is an object of the ifstream class.

16.13 Write a program to write text in the file. Read the text from the file from end of file.

Display the contents of file in reverse order.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[25];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,25);

26

Unit 4

out <<data;

out.close();

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Reverse Contents of the file \n”;

in.seekg(0,ios::end);

int m=in.tellg();

char ch;

for (int i=1;i<=m;i++)

{

in.seekg(-i,ios::end);

in>>ch;

cout<<ch;

}

return 0;

}

OUTPUT

Enter text

Visual_C_+_+

Reverse Contents of the file

+_+_C_lausiV

27

Unit 4

Explanation: In the above program, file text is opened in the output mode, and the string

entered is written to the file. Again, the same file is opened for reading purpose. The statement

in.seekg (0,ios::end); moves the get pointer at the end of the file. The tellg()

function returns the current position of the file pointer in the file. Hence, the file pointer is set to

the end of the file. The tellg() returns the number of last bytes, that is, the size of the file in

bytes, and it is stored in the integer variable m. The for loop executes from 1 to m. The statement

in.seekg (-i, ios::end) reads the ith byte from the end of the file. The statement

in>>ch reads the character from the file indicated by the file pointer. The cout statement

displays the read character on the screen. Thus, the contents of the file are displayed in reverse

order.

16.14 Write a program to enter a text and again enter a text and replace the first word of

the first text with the second text. Display the contents of the file.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[25];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,25);

out <<data;

out.seekp(0,ios::beg);

cout<<“\nEnter text to replace the first word of first text:”;

28

Unit 4

cin.getline(data,25);

out<<data;

out.close();

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Contents of the file \n”;

while (in.eof()!=1)

{ in>>data;

cout<<data;

}

return 0;

}

OUTPUT

Enter text

Visual C++

Enter text to replace the first word of first text : Turbo-Contents of the file

Turbo-C++

Explanation: In the above program, the text is entered and written in the file text. This

process is explained in the previous examples. Here again, the statement

out.seekp(0,ios::beg); sets the file pointer (put pointer) at the beginning of the file.

Again, text is entered and written at the current file pointer position. The previous text is

overwritten.

16.9 SEQUENTIAL ACCESS FILES

29

Unit 4

C++ allows the file manipulation command to access the file sequentially or randomly. The data

of the sequential file should be accessed sequentially, that is, one character at a time. In order to

access the nth number of bytes, all previous characters are read and ignored. There are a number

of functions to perform read and write operations with the files. Some functions read /write single

characters, and some functions read/write blocks of binary data. The put() and get()

functions are used to read or write a single character, whereas write() and read() are used

to read or write blocks of binary data.

put() and get() functions

The function get() is a member function of the class fstream. This function reads a single

character from the file pointed by the get pointer, that is, the character at the current get pointer

position is caught by the get() function.

The function put() function writes a character to the specified file by the stream object. It is

also a member of the fstream class. The put() function places a character in the file

indicated by the put pointer.

16.15 Write a program to write and read string to the file using put() and get()

functions.

#include<fstream.h>

#include<conio.h>

#include<string.h>

int main()

{

clrscr();

char text[50];

30

Unit 4

cout<<“\n Enter a Text:”;

cin.getline(text,50);

int l=0;

fstream io;

io.open(“data”, ios::in | ios::out);

while (l[text]!=‘\0’)

io.put(text[l++]);

io.seekg(0);

char c;

cout<<“\n Entered Text:”;

while (io)

{

io.get(c);

cout<<c;

}

return 0;

}

OUTPUT

Enter a Text : PROGRAMMING WITH C++

Entered Text : PROGRAMMING WITH C++

31

Unit 4

Explanation: In the above program, the file data is opened simultaneously in the read and write

mode. The getline() function reads the string through the keyboard and stores it in the array

text [50]. The statement io.put (text[l++]) in the first while loop reads one

character from the array and writes it to the file indicated by the stream object io. The first

while loop terminates when the null character is found in the text.

The statement io.seekg (0) sets the file pointer at the beginning of the file. In the second

while loop, the statement io.get(c) reads one character at a time from the file, and the

cout() statement displays the same character on the screen. The while loop terminates

when the end of the file is detected.

16.10 BINARY AND ASCII FILES

The insertion and extraction operators known as stream operators handle formatted data.

The programmer needs to format data in order to represent them in a suitable manner. The

description of formatted and unformatted data is given in Chapter 2. ASCII codes are used by the

I/O devices to share or pass data to the computer system, but the central processing unit (CPU)

manipulates the data using binary numbers, that is, 0 and 1. For this reason, it is essential to

convert the data while accepting data from input devices and displaying the data on output

devices. Consider the following statements:

cout<<k; // Displays value of k on screen

cin>>k; // Reads value for k from keyboard

Here, k is an integer variable. The operator << converts the value of the integer variable k into a

stream of ASCII characters. In the same manner, the << operator converts the ASCII characters

entered by the user into binary form. The data are entered through the keyboard, which is a

standard input device. For example, you entered 21. The stream operator >> gets ASCII codes of

the individual digits of the entered number 21, that is, 50 and 49. The ASCII codes of 2 and 1 are

50 and 49, respectively. The stream operator >> converts the ASCII value into its equivalent

binary format and assigns it to the variable k. The stream operator << converts the value of k (21)

that is stored in the binary format into its equivalent ASCII codes, that is, 50 and 49. Figure 16.12

shows a representation of integer numbers in ASCII and binary formats.

32

Unit 4

Fig. 16.12 Representation in binary and ASCII formats

16.16 Write a program to demonstrate that the data is read from the file using ASCII

format.

#include<fstream.h>

#include<constream.h>

int main()

{

clrscr();

char c;

ifstream in(“data”);

if (!in)

{

cerr<<“ Error in opening file.”;

return 1;

}

while (in.eof()==0)

{

33

Unit 4

cout<<(char)in.get();

}

return 0;

}

OUTPUT

PROGRAMMING WITH ANSI AND TURBO-C

Explanation: In the above program, the data file is opened in read mode. The file already exists.

Using get() member function of the ifstream class, the contents of the file are read and

displayed. Consider the following statement:

cout<<(char)in.get();

The get() function reads data from the file in the ASCII format. Hence, it is necessary to

convert the ASCII number into an equivalent character. The typecasting format (char) converts

the ASCII number into an equivalent character. In case the conversion is not done, the output

would be as follows:

8082797182657777737871328773847232657883733265786832848582667967-1

The above displayed are ASCII numbers, and –1 at the end indicates the end of the file.

After typecasting, the original string will be as shown in the output.

The write() and read() functions

The data entered by the user are represented in the ASCII format. However, the computer can

understand only the machine format, that is, 0 and 1. When data are stored in the text, format

34

Unit 4

numbers are stored as characters and occupy more memory space. The functions put() and

get()read/ write a character. The data are stored in the file in character format. If a large

amount of numeric data are stored in the file, they will occupy more space. Hence, using put()

and get()creates disadvantages.

This limitation can be overcome using write() and read() functions. The write() and

read()functions use the binary format of data while in operation. In the binary format, the data

representation is same in both the file and the system. Figure 16.12 shows the difference between

the ASCII and binary format. The bytes required to store an integer in text form depend on its

size, whereas in the binary format the size is fixed. The binary form is accurate and allows quick

read and write operations, because no conversion takes places during operations. The formats of

the write() and read() function are as given below.

in.read((char *) & P, sizeof(P));

out.write((char *) & P, sizeof(P));

These functions have two parameters. The first parameter is the address of the variable P. The

second is the size of the variable P in bytes. The address of the variable is converted into char

type. Consider the following program:

16.17 Write a program to perform read and write operations using write() and read()

functions.

#include<fstream.h>

#include<conio.h>

#include<string.h>

int main()

{

clrscr();

int num[]={100,105,110,120,155,250,255};

35

Unit 4

ofstream out;

out.open(“01.bin”);

out.write((char *) & num, sizeof(num));

out.close();

for (int i=0;i<7;i++) num[i]=0;

ifstream in;

in.open(“01.bin”);

in.read((char *) & num, sizeof(num));

for (i=0;i<7;i++) cout<<num[i]<<“\t”;

return 0;

}

OUTPUT

100 105 110 120 155 250 255

Explanation: In the above program, the integer array is initialized with 7 integer numbers. The

file “01.bin” is opened. The statement out.write((char *) & num, sizeof

(num)) writes the integer array in the file. The &num argument provides the base address of

the array, and the second argument provides the total size of the array. The close() function

closes the file. Again, the same file is opened for reading purpose. Before reading the contents of

the file, the array is initialized to a zero that is not necessary. The statement in.read ((char

*) & num, sizeof (num)); reads data from the file and assigns them to the integer

array. The second for loop displays the contents of the integer array. The size of the file

“01.bin” will be 14 bytes, that is, two bytes per integer. If the above data are stored without

using the write() command, the size of the file will be 21 bytes.

Reading and writing class objects

The read() and write() functions perform read and write operations in a binary format that

is exactly the same as an internal representation of data in the computer. Due to the capabilities

36

Unit 4

of these functions, large data can be stored in a small amount of memory. Both these functions

are also used to write and read class objects to and from files. During read and write operations,

only data members are written to the file, and the member functions are ignored. Consider the

following program:

16.18 Write a program to perform read and write operations with objects using write()

and read() functions.

#include<fstream.h>

#include<conio.h>

class boys

{

char name [20];

int age;

float height;

public:

void get()

{

cout<< “Name:”; cin>>name;

cout<< “Age:”; cin>>age;

cout<< “Height:”; cin>>height;

}

void show()

{

37

Unit 4

cout<<“\n”<<name<<“\t”<<age <<“\t”<<height;

}

};

int main()

{

clrscr();

boys b[3];

fstream out;

out.open (“boys.doc”, ios::in | ios::out);

cout<<“\n Enter following information:\n”;

for (int i=0;i<3;i++)

{

b[i].get();

out.write ((char*) & b[i],sizeof(b[i]));

}

out.seekg(0);

cout<<“\n Entered information\n”;

cout<<“Name Age Height”;

for (i=0;i<3;i++)

{

out.read((char *) & b[i], sizeof(b[i]));

b[i].show();

}

38

Unit 4

out.close();

return 0;

}

OUTPUT

Enter following information:

Name : Kamal

Age : 24

Height : 5.4

Name : Manoj

Age : 24

Height : 5.5

Name : Rohit

Age : 21

Height : 4.5

Entered information

Name Age Height

Kamal 24 5.4

Manoj 24 5.5

Rohit 21 4.5

Explanation: In the above program, the class boys contains data members’ name, age, and

height of char, int, and float type. The class also contains the member functions get()

and show()to read and display the data. In function main(), an array of three objects

39

Unit 4

is declared, that is, b [3]. The file “boys.doc” is opened in the output and input mode to

write and read data. The first for loop is used to call the member function get(), and data read

via the get() function is written to the file by the write() function. The same method is

repeated while reading the data from the file. While reading data from the file, the read()

function is used, and the member function show() displays the data on the screen.

16.11 RANDOM ACCESS OPERATION

Data files always contain a large amount of information, and the information always changes.

The changed information should be updated; otherwise, the data files are not useful. Thus, to

update data in the file, we need to update the data files with latest information. To update a

particular record of the data file, the data may be stored anywhere in the file; it is necessary to

obtain the location (in terms of byte number) at which the data object is stored.

The sizeof() operator determines the size of the object. Consider the following statements:

(a) int size = sizeof(o);

Here, o is an object, and size is an integer variable. The sizeof() operator returns the size

of the object o in bytes, and it is stored in the variable size. Here, one object is equal to one

record.

The position of the nth record or object can be obtained using the following statement:

(b) int p = (n-1 * size);

Here, p is the exact byte number of the object that is to be updated; n is the number of the object;

and size is the size in bytes of an individual object (record).

Suppose we want to update the fifth record. The size of the individual object is 26.

(c) p = (5-1*26) i.e. p = 104

Thus, the fifth object is stored in a series of bytes from 105 to 130. Using seekg() and

seekp() functions, we can set the file pointer at that position.

40

Unit 4

 MORE PROGRAMS

16.26 Write a program to copy contents of one file to another file.

#include<fstream.h>

#include<conio.h>

#include<process.h>

main()

{

61

Unit 4

clrscr();

char s[12],t[12],c;

fstream out;

ifstream in;

cout<<“\n Enter a Source file name:”;

cin>>s;

cout<<“\n Enter a target file name:”;

cin >>t;

in.open(s,ios::in | ios::nocreate);

if (in.fail())

{

cout<<“\nFile “<<s <<“ Not Found”;

exit(1);

}

out.open(t,ios::out | ios::nocreate);

if (out.fail())

{

out.open(t,ios::out);

while (in.eof()==0)

{

in.get(c);

out.put(c);

}

 62

Unit 4

}

else

cout<<“\n Target file already exist.”;

in.close();

out.close();

return 0;

}

OUTPUT

Enter a Source file name : DATA

Enter a target file name : TEXT

Explanation: In the above program, the user enters source and target file names. The

existence of the files is checked. In case the source file is absent and the target file is

already present, the copying of data will not take place. Appropriate messages are displayed

when the file names are not properly entered.

The target file is opened in read and nocreate mode. The nocreate flag prevents the

opening of a new file if the file is absent. If it is unsuccessful, then the open() statement within

the if statement opens the file for writing. The while loop executes the function till the file

pointer reaches the end of the source file. The get() statement reads data from the source file,

and the put() statement writes the read data to the target file. Thus, the copying of data is

carried out. After termination of the while loop, both the files are closed using close()

functions.

16.27 Write a program to copy content of one file in another file in reverse order. Display

the contents of the screen.

#include<fstream.h>

63

Unit 4

#include<conio.h>

#include<process.h>

main()

{

clrscr();

char s[12],t[12],c;

fstream out;

ifstream in;

cout<<“\n Enter a Source file name:”;

cin>>s;

cout<<“\n Enter a target file name:”;

cin >>t;

in.open(s,ios::in); //| ios::nocreate);

if (in.fail())

{

cout<<“\nFile”<<s <<“ Not Found”;

exit(1);

}

else

in.seekg(0,ios::end);

out.open(t,ios::out | ios::nocreate);

int b;

64

Unit 4

if (out.fail())

{

out.open(t,ios::out);

in.seekg(0,ios::end);

b=in.tellg();

for (int i=1;i<=b;i++)

{

in.seekg(-i,ios::end);

in.get(c);

out.put(c);

cout<<c;

}

}

else

cout<<“\nTarget file alredy exist.”;

in.close();

out.close();

return 0;

}

OUTPUT

65

Unit 4

Enter a Source file name : cpp

Enter a target file name : cp2

GnimmargorP detneirO tcejbO

Explanation: In the above program, source and target file names are entered. The content of

the source file is copied to the target file in reverse order. The source file is opened for

reading, and the target file is opened for writing. Using the tellg() function, the size of the

source file is obtained and stored in the variable b. The for loop executes from 1 to b (size of

source file). The seekg() function moves the get file pointer in the reverse order, that is, from

end to top. The argument –i specifies the number of bytes to be read from the end of the file. The

character read by the get() function is written to the target file by the put() function. The

cout() statement displays the contents of the variable c on the screen.

16.28 Write a program to open a file in read and write mode. Write data to the file and

read from it.

#include<fstream.h>

#include<conio.h>

void main()

{

clrscr();

ofstream out (“data.txt”); // creates file for writting

char name[]=”SANJAY”;

int age=25;

float ht=4.5;

out <<name<<“\t”<<age<<“\t”<<ht; // writes data to the data.txt

out.close(); // closes file

66

Unit 4

ifstream in (“data.txt”); // opens file for reading

in>>name >>age>>ht; // reads data from file and assigns to

variables

cout<<endl<<“Name:”<<name; // display data on the screen

cout<<endl<<“Age:”<<age;

cout<<endl<<“Height:”<<ht;

}

OUTPUT

Name : SANJAY

Age : 25

Height : 4.5

Explanation: In the above program, the file “data.txt” is opened in the write mode. The

values of the variable’s name, age, and ht are written to the file. The file is closed using the

close() function.

Again, the same file is opened in the read mode. The data read are assigned to respective

variables and displayed on the screen using the cout() statement.

16.29 Write a program to write data to the file in string format also read and display the

data in the same fashion.

#include<fstream.h>

#include<conio.h>

67

Unit 4

void main()

{

clrscr();

char text[100];

ofstream out (“data.txt”);

out<<“ Programming with ANSI and Turbo C”;

out<<“\n Teaches you C with practical programs”;

out.close();

ifstream in (“data.txt”);

while (!in.eof())

{

in.getline(text,100);

cout<<endl<<text;

}

}

OUTPUT

Programming with ANSI and Turbo C

Teaches you C with practical programs

Explanation: This program is similar to the previous one. Here, a string is written to the file.

Using the getline() function, the string is read from the file and displayed. As soon as the

end of the file is detected, the while loop terminates.

68

Exceptions

Exceptions are run time anomalies or unusual condition that a program may encounter

during execution.

Examples:

Division by zero

Access to an array outside of its bounds

Running out of memory

Running out of disk space

Principles of Exception Handling: Similar to errors, exceptions are also of two types. They are

as follows:

Synchronous exceptions: The exceptions which occur during the program execution due

to some fault in the input data.

For example: Errors such as out of range, overflow, division by zero

Asynchronous exceptions: The exceptions caused by events or faults unrelated (external)

to the program and beyond the control of the program.

For Example: Key board failures, hardware disk failures

The exception handling mechanism of C++ is designed to handle only synchronous

exceptions within a program. The goal of exception handling is to create a routine that detects and

sends an exceptional condition in order to execute suitable actions. The routine needs to carry out

the following responsibilities:

c) Detect the problem (Hit the exception)

d) Inform that an error has been detected (Throw the exception)

e) Receive error information (Catch the exception)

f) Take corrective action (Handle the exception)

An exception is an object. It is sent from the part of the program where an error occurs to

the part of the program that is going to control the error

The Keywords try, throw, and catch

Exception handling mechanism basically builds upon three keywords:

try

catch

throw

The keyword try is used to preface a block of statements which may generate exceptions.

Syntax of try statement:

try

{
statement 1;

statement 2;
}

When an exception is detected, it is thrown using a throw statement in the try block.

Syntax of throw statement

 throw (excep);

 throw excep;

 throw; // re-throwing of an exception

A catch block defined by the keyword ‘catch’ catches the exception and handles it

appropriately. The catch block that catches an exception must immediately follow the try

block that throws the exception

Syntax of catch statement:

try
{

Statement 1;
Statement 2;

}
catch (argument)
{

statement 3; // Action to be taken
}

When an exception is found, the catch block is executed. The catch statement

contains an argument of exception type, and it is optional. When an argument is declared,

the argument can be used in the catch block. After the execution of the catch block, the

statements inside the blocks are executed. In case no exception is caught, the catch block is

ignored, and if a mismatch is found, the program is terminated.

Guidelines for Exception Handling

The C++ exception-handling mechanism provides three keywords; they are try, throw, and

catch. The keyword try is used at the starting of the exception. The throw block is present inside

the try block. Immediately after the try block, the catch block is present. Figure shows the try,

catch, and throw statements.

As soon as an exception is found, the throw statement inside the try block throws an

exception (a message for the catch block that an error has occurred in the try block statements).

Only errors occurring inside the try block are used to throw exceptions. The catch block receives

the exception that is sent by the throw block. The general form of the statement is as per the

following figure.

When the try block passes an exception using the throw statement, the control of the

program passes to the catch block. The data type used by throw and catch statements should be

same; otherwise, the program is aborted using the abort() function, which is executed implicitly by

the compiler. When no error is found and no exception is thrown, in such a situation, the catch

block is disregarded, and the statement after the catch block is executed.

/* Write a program to illustrate division by zero exception. */

#include <iostream>

using namespace std;

int main()
{

int a, b;
cout<<"Enter the values of a and b"<<endl;

cin>>a>>b;
try{

if(b!=0)
cout<<a/b;

else
throw b;

}
catch(int i)

{
cout<<"Division by zero: "<<i<<endl;

}
return 0;

}
Output:
Enter the values of a and b

2 0

Division by zero: 0

/* Write a program to illustrate array index out of bounds exception. */

#include <iostream>

using namespace std;

int main() {
int a[5]={1,2,3,4,5},i;

try{
i=0;
while(1){

if(i!=5)
{

cout<<a[i]<<endl;
i++;

}
else

throw i;
}

}
catch(int i)

{
cout<<"Array Index out of Bounds Exception: "<<i<<endl;

}
return 0;

}

Output:
1
2
3
4
5
Array Index out of Bounds Exception: 5

 /* Write a C++ program to define function that generates exception. */

#include<iostream>

using namespace std;

void sqr()
{

int s;
cout<<"\n Enter a number:";

cin>>s;
if (s>0)
{

cout<<"Square="<<s*s;
}
else
{

throw (s);
}

}
int main()
{

try

{
sqr();

}
catch (int j)

{
cout<<"\n Caught the exception \n";

}
return 0;

}

Ouput:
Enter a number:10

Square=100
Enter a number:-1
Caught the exception

Multiple catch Statements

It is also possible that a program segment has more than one condition to throw an

exception. In such cases, we can associate more than one catch statement with a try (similar to

switch statement). The format of multiple catch statements is as follows:

try
{

// try block
}
catch (type1 arg)
{

// catch section1
}
catch (type2 arg)
{

// catch section2
}
.
.
catch (typen arg)

{
// catch section-n

}

When an exception is thrown, the exception handlers are searched in the order for an

appropriate mach. The first handler that yields a match is executed. After executing the handler,

the control goes to the first statement after the last catch block for that try. When no match is

found the program will terminate.

It is possible that arguments of several catch statements match the type of exception. In

such cases, the first handler that matches the exception type is executed.

/*Write a C++ program to throw multiple exceptions and define multiple catch statement. */

#include <iostream>

using namespace std;

void num (int k)
{

try
{

if (k==0) throw k;

else
if (k>0) throw 'P';

else
if (k<0) throw 1.0;

cout<<"*** end of try block ***\n";
}
catch(char g)
{

cout<<"Caught a positive value \n";
}
catch (int j)
{

cout<<"caught an null value \n";
}
catch (double f)

{
cout<<"Caught a Negative value \n";

}
cout<<"*** end of try catch ***\n \n";

}
int main()
{

cout<<"Demo of Multiple catches"<<endl;

num(0);
num(5);

num(-1);

return 0;
}
Output:

Demo of Multiple catches

caught an null value

2 end of try catch ***
Caught a positive value
3 end of try catch ***
Caught a Negative value
4 end of try catch ***
Caught a positive value
5 end of try catch ***

Catching Multiple Exceptions

In some situations, we may not able to anticipate all possible types of exceptions and therefore

may not be able to design independent catch handlers to catch them. In such circumstances, we

can create a catch statement to catch all exceptions instead of a certain type alone.

Syntax:

catch(...)

{
16.10 Statements for handling
16.11 all exceptions

}

/* Write a C++ program to catch multiple exceptions.*/

#include <iostream>

using namespace std;

void num (int k)
{

try

{
if (k==0) throw k;

else
if (k>0) throw 'P';

else
if (k<0) throw 1.0;

}
catch(...)

{
cout<<"Caught an Exception"<<endl;

}
}

int main()
{

cout<<"Demo of Multiple catches"<<endl;

num(0);
num(5);

num(-1);

return 0;

}

Output:
Demo of Multiple catches
Caught an Exception
Caught an Exception
Caught an Exception

Specifying Exceptions

It is possible to restrict a function to throw only certain specified exceptions. This is

achieved by adding a throw list clause to the function definition. The general form of using an

exception specification is:

return_type fucntion_name (parameter list) throw (data type list)
{

// function body

}

The data type list indicates the type of exception that is permitted to be thrown. If we want

to deny a function from throwing any exception, declaring the data type list void as per the

following statement can do this.

throw(); // void or vacant list

/* Write a C++ program to restrict a function to throw only specified type of

exceptions. */

#include<iostream>

using namespace std;

void check (int k) throw (int)
{

if (k==1) throw 'k';

else
if (k==2) throw k;

else
if (k==-2) throw 1.0;

}
int main()
{

try {
check(1);

check(-2);

check(3);
}
catch (char g)
{

cout<<"Caught a character exception \n";
}
catch (int j)
{

cout<<"Caught a character exception \n";
}
catch (double s)
{

cout<<"Caught a double exception \n";
}
cout<<"\n End of main()";

return 0;
}

